
Exploring spatial data in R

Andrew O. Finley and Sudipto Banerjee

September 5, 2014

1 Data preparation and initial exploration

We make use of several libraries in the following example session, including:

� library(classInt)

� library(fields)

� library(geoR)

� library(gstat)

� library(lattice)

� library(MBA)

� library(maptools)

� library(rgdal)

� library(rgl)

� library(sp)

We will use forest inventory data from a long-term ecological research site in western Oregon (WEF).
These data consist of a census of all trees in a 10 ha stand. Diameter at breast height (DBH) and tree height
(HT) have been measured for all trees in the stand. For a subset of these trees, the distance from the center
of the stem to the edge of the crown was measured at each of the cardinal directions.

Rarely do we have the luxury of a complete census, but rather a subset of trees are sampled using a series
of inventory plots. This sample is then used to draw inferences about parameters of interest (e.g., mean
stand DBH or correlation between DBH and HT). We defer these analyses to subsequent example sessions.
Here, we simply use these data to demonstrate some basics of spatial data manipulation, visualization, and
exploratory analysis.

We begin by removing rows that have NA for the variables of interest, creating a vector of DBH and HT,
and plotting the tree coordinates.

2 Spatial data visualization

> data(WEF.dat)

> WEF.dat <- WEF.dat[!apply(WEF.dat[, c("East_m", "North_m", "DBH_cm",

+ "Tree_height_m", "ELEV_m")], 1, function(x) any(is.na(x))),

+]

> DBH <- WEF.dat$DBH_cm

> HT <- WEF.dat$Tree_height_m

> coords <- as.matrix(WEF.dat[, c("East_m", "North_m")])

> plot(coords, pch = 1, cex = sqrt(DBH)/10, col = "darkgreen", xlab = "Easting (m)",

+ ylab = "Northing (m)")

> leg.vals <- round(quantile(DBH), 0)

> legend("topleft", pch = 1, legend = leg.vals, col = "darkgreen",

+ pt.cex = sqrt(leg.vals)/10, bty = "n", title = "DBH (cm)")

Let’s first take a look at the distribution of DBH across the stand and see if there are any spatial patterns.
To do this it is often useful to use a color gradient or ramp to construct the pallet. These can be created

1

Figure 1: Tree locations on the WEF.

2

using colorRampPalette which crates a function that interpolates over a given set of colors. Here we make
a color ramp function then create a color palette with five shades.

> col.br <- colorRampPalette(c("blue", "cyan", "yellow", "red"))

> col.pal <- col.br(5)

We might choose to depict our data with a color pallet consisting of many shades (e.g., 100) or discretize
the variable of interest and map each interval to a color. It is often easier to identify spatial patterns using
few shades. Given a pallet, we need to decide how to map the colors to the values of the variable of interest.
The classInt package offers several useful algorithms for choosing these intervals.

> quant <- classIntervals(DBH, n = 5, style = "quantile")

> fisher <- classIntervals(DBH, n = 5, style = "fisher")

> kmeans <- classIntervals(DBH, n = 5, style = "kmeans")

> hclust <- classIntervals(DBH, n = 5, style = "hclust")

> par(mfrow = c(2, 2))

> plot(quant, pal = col.pal, xlab = "DBH", main = "Quantile")

> plot(fisher, pal = col.pal, xlab = "DBH", main = "Fisher")

> plot(kmeans, pal = col.pal, xlab = "DBH", main = "Kmeans")

> plot(hclust, pal = col.pal, xlab = "DBH", main = "Hclust")

Figure 2 suggests that the algorithm used for mapping colors to the variable could substantially influence
our perception of spatial patterns. Indeed, mapping the data using quantile and Bclust based intervals
suggest quite different spatial patterns, Figure 3.

> quant.col <- findColours(quant, col.pal)

> fisher.col <- findColours(fisher, col.pal)

> par(mfrow = c(1, 2))

> plot(coords, col = quant.col, pch = 19, cex = 0.5, main = "Quantile",

+ xlab = "Easting (m)", ylab = "Northing (m)")

> legend("topleft", fill = attr(quant.col, "palette"), legend = names(attr(quant.col,

+ "table")), bty = "n")

> plot(coords, col = fisher.col, pch = 19, cex = 0.5, main = "Bclust",

+ xlab = "Easting (m)", ylab = "Northing (m)")

> legend("topleft", fill = attr(fisher.col, "palette"), legend = names(attr(fisher.col,

+ "table")), bty = "n")

Alternatively, we can choose intervals that are meaningful to the analysis. For instance, in a forest
inventory, trees are often identified as sapling, poletimber, sawtimber, and large sawtimber classes, Figure 4.

> fixed <- classIntervals(DBH, n = 4, style = "fixed", fixedBreaks = c(0,

+ 12.7, 30.48, 60, max(DBH) + 1))

> fixed.col <- findColours(fixed, col.pal)

> plot(coords, col = fixed.col, pch = 19, cex = 0.5, main = "Forestry tree size classes",

+ xlab = "Easting (m)", ylab = "Northing (m)")

> legend("topleft", fill = attr(fixed.col, "palette"), legend = c("sapling",

+ "poletimber", "sawtimber", "large sawtimber"), bty = "n")

If the data observations are well distributed over the domain, spatial patterns can often be detected by
estimating a continuous surface using an interpolation function. Several packages provide suitable inter-
polators, include the akima for linear or cubic spline interpolation and the MBA which provides efficient
interpolation of large data sets with multilevel B-splines. Functions within both packages produce grids of
interpolated values which can be passed to image or image.plot to produce <2 depictions, Figure 5, or to
persp or similar functions in rgl to produce <3 depictions, Figure 6.

3

Figure 2: Comparison among several methods for choosing intervals.

Figure 3: Comparison between maps produced using quantile and bagged clustering interval algorithms.

4

Figure 4: Intervals based on previously defined tree size classes.

5

Figure 5: Interpolation of DBH using Multilevel B-spline.

> x.res <- 100

> y.res <- 100

> surf <- mba.surf(cbind(coords, DBH), no.X = x.res, no.Y = y.res,

+ h = 5, m = 2, extend = FALSE)$xyz.est

> image.plot(surf, xaxs = "r", yaxs = "r", xlab = "Easting (m)", ylab = "Northing (m)",

+ col = col.br(25))

> zlim <- range(surf[[3]], na.rm = TRUE)

> zlen <- zlim[2] - zlim[1] + 1

> colorlut <- col.br(zlen)

> col <- colorlut[surf[[3]] - zlim[1] + 1]

> surface3d(surf[[1]], surf[[2]], surf[[3]], col = col)

> axes3d()

> title3d(main = "DBH", xlab = "Easting (m)", ylab = "Northing (m)",

+ zlab = "DBH (cm)")

> drape.plot(surf[[1]], surf[[2]], surf[[3]], col = col.br(150), theta = 225,

+ phi = 50, border = FALSE, add.legend = FALSE, xlab = "Easting (m)",

+ ylab = "Northing (m)", zlab = "DBH (cm)")

> image.plot(zlim = range(surf[[3]], na.rm = TRUE), legend.only = TRUE,

+ horizontal = FALSE)

6

Figure 6: Perspective plot of Multilevel B-spline interpolation of DBH.

3 Variogram Analysis

Our visual inspection of these data suggest that there is some degree of spatial dependence in the distribution
of DBH across the WEF. This encourages further exploration using a variogram analysis to quantify the range
of spatial dependence and the apportioning of variance into spatial and non-spatial components. Also, within
a regression context, are there predictor variables that might explain a portion of the spatial dependence in
DBH?

We begin by fitting an isotropic empirical semivariogram using functions within the geoR package. In
the code block below, we first fit an exponential variogram model to DBH then fit a second variogram model
to the residuals of a linear regression of DBH onto tree species. The resulting variograms are offered in
Figure 7. Here the upper and lower horizontal lines are the sill and nugget, respectively, and the vertical
line is the effective range (i.e., that distance at which the correlation drops to 0.05).

> max.dist <- 0.25 * max(iDist(coords))

> bins <- 50

> vario.DBH <- variog(coords = coords, data = DBH, uvec = (seq(0,

+ max.dist, length = bins)))

variog: computing omnidirectional variogram

> fit.DBH <- variofit(vario.DBH, ini.cov.pars = c(600, 200/-log(0.05)),

+ cov.model = "exponential", minimisation.function = "nls", weights = "equal")

variofit: covariance model used is exponential

variofit: weights used: equal

variofit: minimisation function used: nls

> lm.DBH <- lm(DBH ~ Species, data = WEF.dat)

> summary(lm.DBH)

7

Call:

lm(formula = DBH ~ Species, data = WEF.dat)

Residuals:

Min 1Q Median 3Q Max

-78.423 -9.969 -3.561 10.924 118.277

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.423 1.303 68.629 <2e-16 ***

SpeciesGF -51.598 4.133 -12.483 <2e-16 ***

SpeciesNF -5.873 15.744 -0.373 0.709

SpeciesSF -68.347 1.461 -46.784 <2e-16 ***

SpeciesWH -48.062 1.636 -29.377 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.19 on 1950 degrees of freedom

Multiple R-squared: 0.5332, Adjusted R-squared: 0.5323

F-statistic: 556.9 on 4 and 1950 DF, p-value: < 2.2e-16

> DBH.resid <- resid(lm.DBH)

> vario.DBH.resid <- variog(coords = coords, data = DBH.resid, uvec = (seq(0,

+ max.dist, length = bins)))

variog: computing omnidirectional variogram

> fit.DBH.resid <- variofit(vario.DBH.resid, ini.cov.pars = c(300,

+ 200/-log(0.05)), cov.model = "exponential", minimisation.function = "nls",

+ weights = "equal")

variofit: covariance model used is exponential

variofit: weights used: equal

variofit: minimisation function used: nls

> par(mfrow = c(1, 2))

> plot(vario.DBH, ylim = c(200, 1200), main = "DBH")

> lines(fit.DBH)

> abline(h = fit.DBH$nugget, col = "blue")

> abline(h = fit.DBH$cov.pars[1] + fit.DBH$nugget, col = "green")

> abline(v = -log(0.05) * fit.DBH$cov.pars[2], col = "red3")

> plot(vario.DBH.resid, ylim = c(200, 500), main = "DBH residuals")

> lines(fit.DBH.resid)

> abline(h = fit.DBH.resid$nugget, col = "blue")

> abline(h = fit.DBH.resid$cov.pars[1] + fit.DBH.resid$nugget, col = "green")

> abline(v = -log(0.05) * fit.DBH.resid$cov.pars[2], col = "red3")

Now let’s check for possible anisotropic patterns of spatial dependence using the geoR function variog4

which calculates directional semivariogram.

8

Figure 7: Isotropic semivariograms for DBH and residuals of a linear regression of DBH onto tree species.

9

Figure 8: Directional semivariograms for DBH.

> vario.DBH.resid <- variog4(coords = coords, data = DBH.resid, uvec = (seq(0,

+ max.dist, length = bins)))

variog: computing variogram for direction = 0 degrees (0 radians)

tolerance angle = 22.5 degrees (0.393 radians)

variog: computing variogram for direction = 45 degrees (0.785 radians)

tolerance angle = 22.5 degrees (0.393 radians)

variog: computing variogram for direction = 90 degrees (1.571 radians)

tolerance angle = 22.5 degrees (0.393 radians)

variog: computing variogram for direction = 135 degrees (2.356 radians)

tolerance angle = 22.5 degrees (0.393 radians)

variog: computing omnidirectional variogram

> plot(vario.DBH.resid, omni = TRUE, main = "DBH residuals", lty = 1,

+ col = c("darkorange", "darkblue", "darkgreen", "darkviolet",

+ "black"))

10

4 References

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004). Hierarchical Modeling and Analysis for Spatial Data,
Boca Raton, FL: Chapman and Hall/CRC Press.

Bivand, R.B., Pebesma, E.J., and Gómez-Rubio, V. (2008). Applied Spatial Data Analysis with R, UseR!
Series, Springer.

Diggle, P.J. and Riberio, P.J. (2007). Model-based Geostatistics, Series in Statistics, Springer.

11

